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1.0 PUBLICATIONS

During the year a number of publications appeared
whose research was sponsored by the Grant. Copies of the

first page of the papers are attached and will indicate the

Journals in which the papers appeared and the abstracts will

give an indication of the research contained in the papers.



2.0 RESEARCH DIRECTIONS

In addition to the research reported in the pub-

lished papers referred to aboves some progress was made in

relating the inverse scattering problem to causality. In

particular, Newtonts "miracle" formula for the potential in

three-dimensional inverse scattering was derived purely from

causality considerations. Moreover, the one-dimensional

analogue indicated some possible problems when point eigen-

values were present. Termination of the grant precluded

completion of the paper and subsequent publication.
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1Eigenvalues and elgenfunctions associated with the Ge'fand-Levitan
equation

Hary E. Moea
Coenerfor Amwhffk Rtneav. Unlunett OfLow*lL Lowelt Meawusettr O14

Rome T. Promer
Department f Mamadwm Dartouth COq Hanowr, New Hampaire 03 755

, (Received 8 June 1983; accepted for publication 10 August 1983)
It is shown here that the solutions of the Gel'fand-Levitan equation for inverse potential

scattering on the line may be expressed in terms of the eigenvalues and eigenfunctions of cettain
associated operators of trace class. The details are sketched for the case of rational reflection
coefficients, and carried out for the simplest class of examples.

PACS numbers: 03.80. + r, 03.65.Nk

1. INTRODUCTION it follows that the operator P(w)R is of trace clan for each w,

The Gel'fand-Levitan equation plays a central role in and
solving inverse scattering problems in one dimension.' In the
case where the problem involves a scattering potential V(x) tr P(w)R - 2zz" (9)

Sdefined for - co <x < + w, for example, we know that
V(x .) may be recovered from the reflection coefficient Pjk), One can then define the FredhoiM determinant A (w) of the
defined for - co < k < + ao, as follows: set operator (I + Piw)R ) by (ef. Ref 3, p. 2553)

" " I t( , ) = ~ t Y ) - + " _ r ik )e _ d k , (1) A (w ) - = d e tV + P (w )R t ,y y - - x r+ P t .( o

2w -exp trlog(I+P W)R. (10)
and then solve for K (x, y) the Gelfand-Levitan equation Evidently

K(x, y)+R(x, y) + K (xz)R (z, yd- 0. (2) logA(W)-lgA W +Ptrl (+Pw)lt) (i

and so
Then the potential V x) appears as

d dwl= 2- d AW
Vlx} 2-K (x,x). 13) (w)

(See Ref. 2 for a general discussion of this procedure.) - tr Pw)Rt I.+ P( wiR'

In order to study the behavior of the solutions of(2}, It is = - tr P'(w)K (w). (12)
useful to consider the associated equation, to be solved for Hem we have used (8). But P'lw)K (w) has kernel
K (x, y,w): 8(w - x)K (x, yw), so

K (x, yw)-I-R~xpvt R4)
,)zdza0.tr P (w)K (w) 6 -) xxwd

Evidently K (x, yx) = K (x, y). Now (4) may be expressed in K (W.ww)
operator form with w as a parameter:

K(w) + A + K(w)P(w)R = 0. (5)

Here AR, K (w), and P(w) are integral operators with kernels Hence by (3)
R (x, y), K (x, yw), and P (x, y,w), with dV(w) am 2-K(ww)

P (x, y,w) = (w -x)AX - ). (6) W

Here 8(z) is the Heaviside function, and 6(z) itt derivative. -- (4 (14)
Now (4) yields

K (w)(I+ P(w)R )= - R, (7) This formula, which gives V directly in terms ofR, frst
and hence, whenever (I + P (w)R ) is invertible, appears in Ref. 4, and has since been rediscovered by several
a ,+i vauthors, including us.' In one sense, this formula by-passes

K(w)= -R(+P(w)R)-'. (8) the Oel'fand-Levitan equation, since it gives V directly in

Now suppose that the reflection coefficient r(k) is such terms of f, and once V is known everything about the scat-
that its Fourier transform (z) is smooth and integrable. Then tering problem is known, at least in principle.

In another sense (14) is no better than (4), since the cal-
culationofthedeterminantA (w)of(l + P(w)R )isnotusually

'"Rewmrh Spmored In part by AIOR Grant No. 1-0253A. an easy matter in practice. One possible approach is to calcu-

Sof J. Mai. Phy. 25 (1). Jwvlay 1964 002-240/'40101d6-O06.060 * 19@4 Ampeto hllut of Phyics 100
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phases of complex functions from the amplitudes of the
functions and the amplitudes

of the Fourier and Mellin transforms

H. E. Moses

GentIr fur Almosphe.ric Rrs-,urch. I Inive.rsi% o I)well. 450 Aiksn Sreet. L)well. Mussuchusels (11854

R. T. Prosser

IDepur:menn of Mofthernmtrs. L)rtniouth College,. i funover. New I luimphire 0.755

Received Murch 19. 1983; revised manuscript received June 20. 1983

For the most part, the phase-retrieval problem has been dominated by the use of the Hilbert transform on the loga-
rithm of the absolute value of the wave function. In our approach, by contrast, we use the intensity associated with
the function and the intensities in Fourier- or Mellin-transform space corresponding to a set of ape: cure to obtain
the phases within a constant by means of simple formulas. The set of apertures required is those arbitrarily close
to a fied aperture and its complement. The higher-dimensional cases are aim) treated for the case of the Fourier
transform.

-INTRODUCTON though numerical implementation has yet to be done using

our method. Owof us (Moss) reviewed the material of Ref.
lIs most commonly used method uaed to obtain the phase 3 from a different point of viow and showed also that the in-
sa complez function f(ix) of a real variable x is to take the tenmities in the Mellin-transform space could be used instead
bgrithm oflx), which in certain circumstances can be an. of those in the Fourier-transform space.6
"ytically continued in the complex plane. The Hilbert Without going into detail, we report that the squares of the

*. wansfdorm is then used to find the pha , which is the ratio of amplitudes of Fourier transforms correspond to intensities
ti imaginary part of the logarithm to the real part; the real of the spectral components in 1(x) when the signal passes
part is the logarithm of the absolute value of the function. For through gratings of varying aperture. Another well-known
mique results, the zeros of the analytic function must be physical situation in which the function and its Fourier
preacribed. Various methods are used to find them from transform occur is that of optical systems, in which it can be
physical measurements, which correspond to the use of ap- shown that the wave functions in the aperture and the image
propriate sets of apertures. A survey of approaches to the plane constitute a Fourier-transform pair.'
phase-retrieval problem is given in Ref. 1. A recent method The applications of phase retrieval are many and important.
ix locating the zeros is given in Ref. 2. Among the applications are (dark-field) electron microscopy

As far a we can determine, the first departure from the use and holography. Other applications are mentioned in Refs.j of the Hilbert transform was given in 1963 by Lomont and I and 5.
Mo@f 3 The object of their approach was to give data in The significance of the Mellin transform in terms of scaling
terms of intensities only. it was shown that a necessary and is discussed in Ref. 7, in which a method is also given whereby
sufficient condition for two complex functions with the same the intensities in the Mellin-transform space (in one dimen-
amplitude to have the satne phase within a constant was that sion I can be obtained as a Fourier transform of a scale auto-
twh squarm of the amplitudes in Fourier-transform space be correlation. The optical importance of the Mellin transform
equal for all apertures through which f(x) is observed. In 1971 is discussed in Refi. 8 and 9, in which methods of imple-
Gerchbrg and Sexton' independently used the input required menting the transform optically are discussed.
by the theorem of Ref. 3 to obtain the phase and gave nu- Although the Mellin transform can be obtained from the

.. ameical methods to obtain it. In Ret 5 the intenities in Fourier transform by a change of variables, the two transforms
Fourier-transform space are also used, together with analytic represent different situations. In Ref. 7 it is shown that peaksK properties of the function and its transform, and, like the work in the Mellin-transform power spectrum correspond to fea-

--- of Ref. 4, that of Ref. 5 goes in a different direction from tures in the original function that are periodic in magnifi--
.- cums (ion. By contrast. peaks in the Fourier- transform power

In this paper we give simple formulas for phase retrieval spectrum correspond to features that are periodic in trart-

based on measurements using apertures arbitrarily close to lation. It thus behooves us to study phase retrieval in terms
% a fixed aperture and its complement. We believe that our of the Mellin-trasform power spectra as well as spectra (of the

work is easier to use in many cases than that done earlier, al- Fourier transform.

N):I.394 1/8l/ 1I1451-4M$01.00 C 19K' Optical Society of America



The use of comparison filters In linear filter theory
Han E. Mows"'
Citerfor Atmnophenc Research, Untvrsily Of Lowell. Lowell Massachusetts 01854
(Received 15 April 1983; accepted for publication 24 June 1983)

In the present paper, it is shown how the linear filter equation for a given correlation coefficient
can be solved in terms of the solution of the filter equation with a different correlation coefficient.
The second filter is called a comparison filter. One obtains an integral equation for the difference
of the two filters in terms of the difference of the two correlation functions and the solution of the
companson filter. Thus if the comparison filter is known and its correlation coefficient is close to
that of the desired filter, one may regard the comparison filter as being an approximation to it. The
difference of the two filters is then small and perturbation expansions or variational principles for
the difference may be expected to give better results than if one did not use a comparison filter.
The difference in the solutions of the two filter equations may also be regarded as the change (or
error) in the filter due to a change for error) in the correlation coefficient. Our result is obtained by
pressing the close analogy of the filter equation to the Gel'fand-Levitan equation of inverse
spectral theory. Another result of the use of comparison filters is to show that the filter equation
for the difference of filters satisfies a possibly useful grouplike property.

PACS numbers: 02.30. + g, 02.30.Rz

L- INTRODUCTION error) in the filter due to a change (or error) in the correlat
In Ref. I, Kay and Moses treated the Gel'fand-Levitan coefficient. Another result of the use of a comparison fit

equation of the inverse spectral theory problem from a very to show that the filter equation for the difference of tilit
general point of view and observed that the Gerfand-Levi- satisfies a possibly useful grouplike property.
tan equation was a generalization of the filter equation of
that time, namely, the Wiener-Hopf equation. This observa- II. THE FILTER EQUATION AS A GEL'FAND-LEVITI
ion continues to hold for more general filters, for example, EQUATION
the Kalman filter. Recently, one of us (Moses, Ref. 2) gave a In dealing with the filter equation, we shall use stan
.eneral scheme for introducing comparison potentials for notation as given, for example, in Kailath's monograph (
which the solution of the corresponding el'fand-Levitan 3). The filter equation is then
equation is known. The solution ofany other Gel'fand-Levi.
tan equation could be expressed in terms of the known solu- h (I,s) = x bis) - h f,rjt frsdr 10 <s't<
tion through the use of an integral equation for the difference
of the known and sought for Gel'fand-Levitan kernels. The
use of comparison potentials led to perturbation schemes In Eq. (1), h (ts) is the filter matrix h (ts) Ih, (is)1. and d
and variational principles which, in principle at least, led to matrix K (ts) = I K,, (ts) is related to the signal correlat
more accurate approximations for the desired Gel'fand-Le- matrix R,(t,s) by
vitan kernel. R,(ts) = 1,P(t - s) + K (t.s;-Ey(t hy'(t I.

The purpose of the present paper is to give the analog
for the filter equation. It is shown how the linear filter equa- The Gelfand-Levitan equation, as treated in Ref. !. is idc
tion for a given correlation coefficient can be solved in terms tical to the filter equation in which h (ts) is the negative oft
of the solution of the filter equation with a different correla- Gel'fand-Levitan kernel (t IK Is),and thematrix K (1,s)is t
t. .. lion coefficient. The second filter is called a comparison fil- driving kernel (t 11 Is) of Ref. i. To press the analogy ev
ter. One obtains an integral equation for the difference of the further, it is useful to define the filter matrix as having ih
two filters in terms of the difference of the two correlation triangularity property
functions and the solution of the comparison filter. Thus if h (rs) =0 for s > t.
the comparison Alter is known and its correlation coefficient In the space of observables which include the signal.
is close to that of the desired filter, one may regard the com- y(t ), let us define the operators in terms of integral operatc

* ~* parison filter as being an approximation to it. The difference with kernels For example iff~t ) is in the space, we shall wr
o f th e tw o fi lte rs is th e n sm a ll a n d p e rtu rb a tio n e x p a n s io n s .. .... .... ... . i i in ' sp ce. w e s h a ll. . .

or variational principles for the difference may be expected t I h Jtsjsgs, R(t R ts)f(s)d
to give better results than if one did not use a comparison J,. f.

*1, ~ Aker.
The difference may also be regarded as the change (or and so on. Let us define the operator U by

Itnramsoftdbythe Aiorce Ofte ofScientic Resiarch, under UP) =P0 - M.
Omani No. AFOSR-l--0233A. In particular. if )y( I is a signal,

m0 J. Math. Ptys 24 (11). November 1983 0022.2488/83/112550-03I02.50 'c) 1983 American Insttute ot Physics
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